REBUILDING LIFE - THE PROMISE OF RE-GENERATIVE THERAPIES SYSTEM IN HEALTHCARE

Project Reference No.: 48S BE 1641

College: New Horizon College Of Engineering, Bengaluru

Branch: Department Of Computer Science And Engineering

Guide(S): Ms. Chempavathy B

Mrs. Bibiana Jennifer

Student(S): Mr. Dasari Teja

Mr. Chandhamuri Pavankumarreddy

Mr. Dara Harshavardhan Mr. Gowripranayreddy

Keywords:

Regenerative Medicine, Web Application Development, Therapy and Rehabilitation, Patient Engagement Platform, Digital Healthcare Solutions

Introduction:

Regenerative therapies involve a multidisciplinary approach aimed at repairing or replacing damaged tissues and organs to restore normal function. This project focuses on developing a web application dedicated to educating and informing users about various regenerative therapies. The application provides information on treatments that help in recovering lost functions or aging-related deterioration in the human body.

Through an interactive and user-friendly interface, the platform supports users in understanding physical, mental, and emotional therapy options. The content includes treatment methodologies, therapy outcomes, staff profiles, patient journals, and contact information. It also offers educational content highlighting the importance of seeking professional therapeutic care.

Previous work in this area typically involved static informational websites. In contrast, this project aims to provide a more dynamic and responsive solution, allowing better patient engagement and awareness. The platform showcases modern regenerative approaches including stem cell therapy, physical

rehabilitation, and psychological support strategies. The project contributes to digital healthcare by simplifying access to trustworthy, personalized treatment information.

Objectives:

- 1. To design and develop an automated, end-to-end regen web Application that simplifies the creation, participation, and evaluation of quiz.
- 2. To implement an intuitive and responsive front-end using Web Development tools that enhances user interaction across multiple devices.
- 3. To build a robust and scalable back-end using Spring Boot, capable of handling complex logic and high user traffic securely.
- 4. To ensure efficient data storage, retrieval, and integrity through the use of a MySQL relational database.
- 5. To design and develop a responsive web application for regenerative therapies.
- 6. To provide detailed information on various types of regenerative treatments.
- 7. To enhance user knowledge about physical and psychological therapies.
- 8. To include staff profiles and contact features for better patient-doctor communication.
- 9. To create a platform for patients to record and view personal therapy journals.
- 10. To visually present therapy procedures and their benefits.
- 11. To incorporate a virtual tour of the therapy center for remote users.
- 12. To develop an intuitive user interface prioritizing patient experience.
- 13. To spread awareness about the importance of regenerative care.
- 14. To promote informed decision-making for individuals seeking therapy.

List the objectives 3 of project

- 1. To design and develop an automated, end-to-end regen web Application that simplifies the creation, participation, and evaluation of quizz.
- 2. To implement an intuitive and responsive front-end using Web Development tools that enhances user interaction across multiple devices.

3. To build a robust and scalable back-end using Spring Boot, capable of handling complex logic and high user traffic securely.

Methodology:

The system is designed as a responsive web application that combines interactive quiz functionalities with comprehensive modules on regenerative therapies. The front-end is developed using modern web technologies to ensure intuitive and seamless user interaction across various devices. The back-end is implemented using Spring Boot, providing secure, scalable support for complex logic and high user traffic. MySQL is used for efficient and reliable data storage and retrieval. The application includes detailed information on regenerative treatments, staff profiles, therapy journals for patients, visual guides, and a virtual tour of the therapy center. The interface is user-focused, aiming to enhance awareness, support patient-doctor communication, and promote informed decision-making in healthcare.

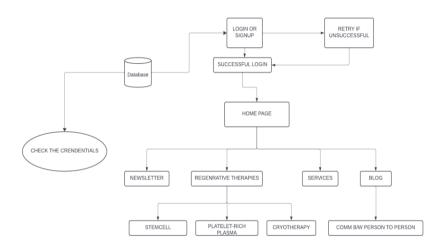


Figure 1: Data Flow Diagram

Result and Conclusion:

The final web application met the functional and design goals set at the beginning of the project. Users can now explore different regenerative therapy options, understand treatment outcomes, and contact professionals through the website. The journal feature allows patients to maintain therapy logs, and the virtual tour enhances user engagement. Feedback from test users indicated improved understanding of therapy types and increased trust in digital healthcare tools.

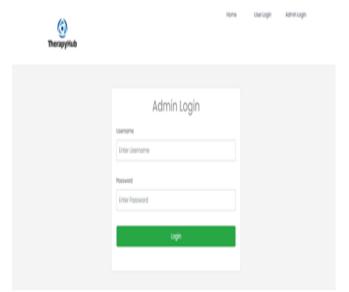


Figure 2: Login Page

Figure 3: Home Page

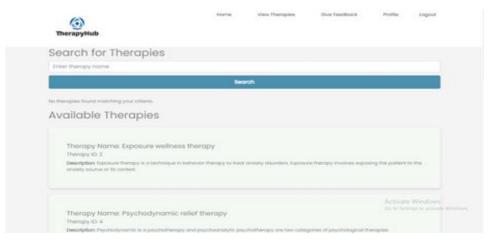


Figure 4: Search Therapies

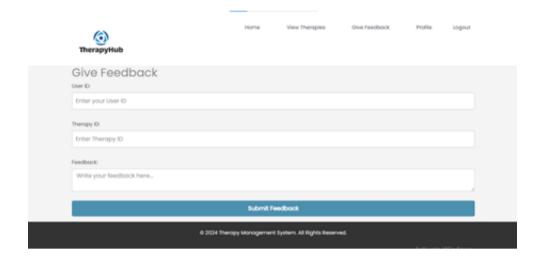


Figure 5: Feedback System

In conclusion,

Performance tests showed fast page loads and seamless navigation. The site architecture proved scalable, allowing future additions like video consultations and live support. In conclusion, the web application bridges the gap between patients and regenerative healthcare providers, offering a user-friendly solution that promotes physical and mental well-being.

Future Scope:

The application can be enhanced with AI-based therapy recommendations, video consultations, mobile app support, and integration with wearable devices. Features like multilingual support, accessibility tools, recovery dashboards, appointment scheduling, and a community forum can create a more personalized, inclusive, and interactive healing experience.