BLOOD GROUP DETECTION BY USING FINGERPRINT

Project Reference No.: 48S BE 3073

College : DON BOSCO Institute Of Technology, Bengaluru
Branch : Department Of Computer Science And Engineering

Guide(S) : Dr. Arunkumar Gopu

Student(S): Mr. Lohith N H

Mr. Karthik M C Ms. Raksha R Ms. Priya Kumari

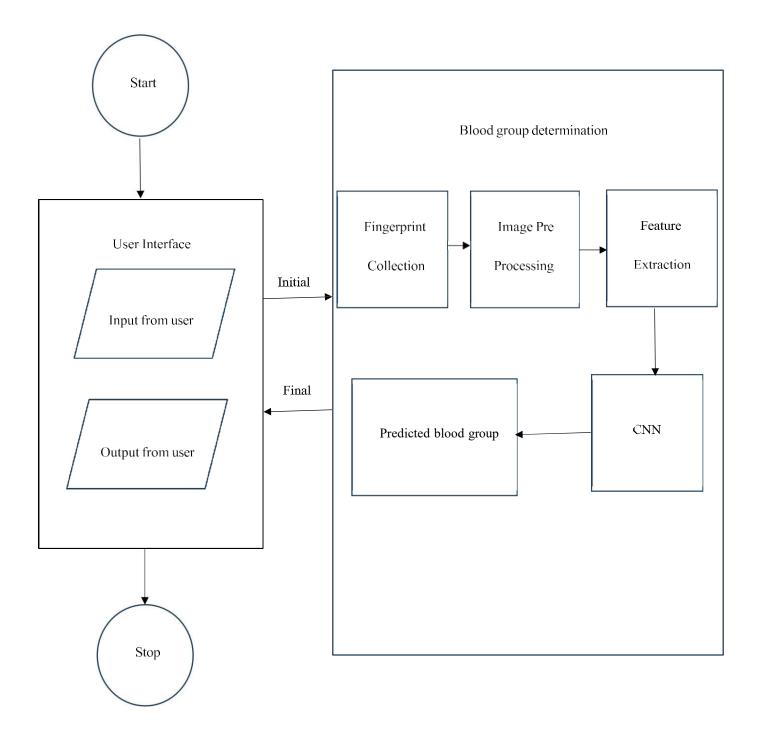
Keywords:

CNN, Authentication and Authorization, Predictive Analytics, Al-Powered Decision Support System, Pattern Recognition.

Introduction:

The project "Blood Group Detection Using Fingerprint" explores an innovative and noninvasive approach to determining an individual's blood group using biometric data. Traditional blood group testing requires drawing blood and conducting lab analysis, which can be time-consuming, uncomfortable, and inaccessible in emergency or rural settings. This project leverages fingerprint patterns—unique to every individual—and applies image processing and deep learning algorithms to analyze biometric features and predict blood groups. By using Convolutional Neural Networks (CNNs) and advanced preprocessing techniques, the system extracts key features like ridge patterns and minutiae points from thumb impressions. A significant aspect of the project is its aim to develop a web-based application using frameworks like Flask or Django, ensuring ease of use for medical professionals and integration into existing healthcare systems. The system is designed to be fast, accurate, and user-friendly, making it ideal for deployment in hospitals, blood banks, and mobile diagnostic units. This fusion of biometrics and artificial intelligence represents a step forward in personalized medicine, emergency preparedness, and healthcare accessibility. The project holds the potential to revolutionize how blood group detection is approached in real-world scenarios especially where speed and convenience are paramount.

Objectives:

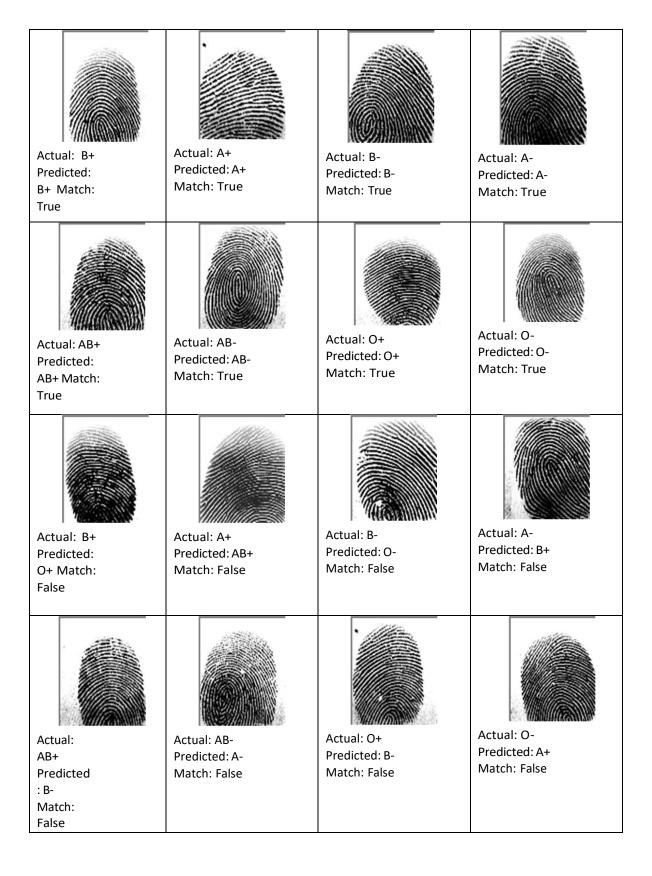

The "Finger Print Based Blood Group Detection" project aims to create a fast, non-invasive method for blood group identification using thumb impressions. By developing a web application with Flask or Django, the project seeks to enhance the convenience and speed of blood group testing, improving both emergency medical responses and routine patient care. This innovative approach aims to overcome the limitations of traditional methods, providing a reliable and accessible tool for medical professionals and patients alike. Ultimately, it contributes to the advancement of medical diagnostics, streamlining processes and ensuring quicker, more efficient care.

List the objectives 3 of project:

- Develop a Non-Invasive Blood Group Detection System:
 - Build a system that uses fingerprint images to predict blood groups, eliminating the need for blood samples.
- Integrate Advanced Image Processing Techniques:
 - Preprocess fingerprint images (grayscale conversion, resizing, normalization) for accurate model training
- Apply Deep Learning Algorithms (CNN + RNN):
 - Use convolutional and recurrent neural networks to extract and analyze features from fingerprints for classification.

Methodology:

The project motive of the research is to use the relationship among details and blood type to create an accurate fingerprint-based blood group test and evaluate the feasibility of the concept. First the model is evaluated using existing CNN architectures and upon observing the performance a custom model can be constructed for better performance.



- Data Collection: The data is collected from medical surveys and fingerprint sensors to create a dataset mapping fingerprints to blood groups across various demographics. As a specific dataset isn't readily available, physical surveys with fingerprint sensors or ink methods are used to gather the data.
- Data Preprocessing: Preprocessing techniques like ridge segmentation, histogram equalization, and binarization are applied to fingerprint images to enhance their quality and separate relevant features. These steps ensure that the data is suitable for further analysis and classification.

Feature Extraction: Techniques such as thinning and minutiae detection are
used to extract critical features from fingerprint images, like ridge endings and
bifurcations. These features are then converted into a feature vector for input into
a Convolutional Neural Network (CNN) for classification.

Result and Conclusion:

In conclusion, this project introduces an innovative approach to blood group detection by integrating fingerprint biometrics and deep learning, offering a rapid, non-invasive, and accessible alternative to traditional blood typing methods. By utilizing convolutional neural networks (CNNs) for feature extraction and classification, the system identifies subtle patterns within fingerprint images that are correlated with genetic markers linked to blood groups. This unique methodology eliminates the need for blood samples, making it ideal for emergency situations where time is critical. The system is designed with accessibility and privacy in mind, incorporating robust deployment and security features to ensure data integrity and confidentiality. With fingerprint sensors and advanced image processing techniques, the project provides a reliable and efficient solution for medical and emergency settings. Data preprocessing techniques such as ridge segmentation, histogram equalization, and binarization ensure that fingerprint images are optimized for accurate classification. Although challenges remain, such as achieving flawless accuracy and gathering diverse datasets, this project lays the groundwork for further research and optimization in biometric-based health diagnostics. The potential for Al and biometric technologies to enhance personalized healthcare is vast, with the system offering a promising tool for medical diagnostics and emergency response worldwide. Ultimately, this project underscores the transformative role of AI and biometrics in advancing healthcare, providing a path for improved medical diagnostics and more efficient emergency care, contributing to a more advanced and accessible healthcare system globally.

