GARBAGE CONTENT ESTIMATION AND PREDICTION USING IOT AND MACHINE LEARNING

Project Reference Number: 48S_BE_1872

College: B.G.S. Institute of Technology, Mandya

Branch: Department of Artificial Intelligence and Machine Learning

Guide: Mr. Anil Kumar K B Student(s): Mr. Jayanth P S

Mr. Chandan H M Mr. Kishan Gowda V S

Keywords:

IoT, Machine Learning, Waste Management, Smart Bins, Data Processing

Introduction/Background:

The 'Garbage Content Estimation and Prediction Using IoT and Machine Learning' project introduces an innovative approach to waste management, focusing on efficiency improvement in monitoring and controlling waste levels in urban and industrial areas. IoT sensor networks, combined with machine learning algorithms, play a crucial role in waste estimation. This system gathers real-time data from smart bins through sensors to assess the type and quantity of waste. When the waste levels exceed a certain threshold, the system generates alerts and records real-time data, enabling authorities to optimize waste collection and disposal schedules effectively. The adoption of this technology enhances urban cleanliness and reduces unnecessary waste accumulation.

Objectives:

- To design and develop an IoT-based system for monitoring waste levels in smart bins.
- To implement machine learning algorithms for waste content classification and prediction.
- To provide real-time data analytics for optimizing waste collection and management.

- To reduce operational costs and improve urban waste disposal efficiency.

Methodology:

- 1. Hardware Setup: Smart bins equipped with IoT sensors (such as ultrasonic and infrared sensors) to detect waste levels.
- 2. Data Collection: Sensors continuously monitor and transmit waste level data to a cloud-based system.
- 3. Data Processing: The collected data is preprocessed to remove inconsistencies and anomalies.
- 4. Machine Learning Model: Algorithms such as Decision Trees, Random Forest, or Neural Networks are trained on historical waste data to predict waste overflow patterns.
- 5. Alert System: When bins approach full capacity, alerts are generated and sent to waste management teams for efficient collection scheduling.
- 6. Dashboard Visualization: A web-based interface displays real-time waste levels, predictions, and analytics.

Results & Conclusions:

The system successfully estimated and predicted garbage content levels based on real-time sensor data. With the integration of IoT and machine learning, waste collection routes were optimized, reducing unnecessary pickups and improving efficiency. The results demonstrated an increase in waste management effectiveness, leading to cleaner urban environments. Future enhancements can include Al-driven predictive models for even greater accuracy.

Project Outcome & Industry Relevance:

- Improves waste management efficiency in smart cities.
- Reduces operational costs for municipal waste collection services.
- Enhances environmental sustainability by minimizing overflow and littering.
- Provides valuable insights for policy-making and resource allocation in urban planning.

Working Model vs. Simulation/Study:

This project involves both a working model (IoT-enabled smart bins) and simulation-based analysis (machine learning predictions and data processing).

Project Outcomes and Learnings:

- Understanding of IoT hardware integration and cloud-based data processing.
- Application of machine learning in real-world problem-solving.
- Experience in real-time data analytics and alert system development.
- Practical insights into optimizing municipal waste collection strategies.

Future Scope:

- Enhancing machine learning models with deep learning techniques for better accuracy.
- Integrating Al-driven automated waste sorting systems for recycling efficiency.
- Expanding the project for large-scale smart city waste management initiatives.
- Adding mobile application support for better accessibility and real-time tracking.