
Autonomous Carrier Robot

Project Reference No.:45S_BE_2487

College : St Joseph Engineering College, Vamanjoor Mangaluru

Branch : Department of Electronics and Communication Engineering

Guide(s) : Dr Binu K G and Ms Deepthi S R

Student(S) : Ms. Sharon Frank

 Mr. Karan B

 Mr. Melroy Almeida

 Mr. Ashwin K S

Keywords

Robot Operating System (ROS), autonomous navigation, Simultaneous Localization and

Mapping (SLAM), path planning.

Introduction

With the advancements in technology robots are used in many sectors of industries. They

operate in places that are dangerous and perform operations that are difficult for humans. They

also play an essential role in our society such as in hospitals, airports, hotels, etc. This has

aided humanity in avoiding several mishaps, as well as saving time and money.

There are times when a large object must be carried across short distances, such as in college

campuses or construction sites. Because a worker frequently utilises a vehicle to complete this

operation, a significant amount of time, fuel, and labor is spent on a routine task. In light of the

above situation the idea of the autonomous carrier robot is brought out in this paper.

The Autonomous Carrier Robot as the name suggests is a navigation robot whose main

purpose is to transport heavy objects from one place to another. It has been designed to assist

workers within the campus to carry heavy objects therefore reducing manual labor and saving

time. The robot utilises technologies like Robot Operating System (ROS) for Simultaneous

Localization and Mapping (SLAM), navigation and path planning and PID for smooth

movement. For the generation of maps using ROS a sophisticated sensor i.e. the RP LiDAR

A2M8 is used.

ROS, or Robot Operating System, is a software development platform for robots. It's a set of

tools, libraries, and conventions aimed at making the work of sophisticated programs and

reliable robot behavior on a range of robotic systems easier. It establishes a robotics software

development standard that may be applied to any robot. ROS provides a set of common robot-

specific libraries and tools that may quickly get a robot up and running.

Objective

(a) To integrate Raspberry Pi with ROS.

(b) To visualize the obstacles by integrating ROS and RPLIDAR.

(c) To obtain a map using hector slam and g-mapping.

(d) To collect odometry data for localization and use it for movement of the bot.

(e) Developing a stable structure with the help of the mechanical team.

Methodology:

Fig 1: Block Diagram

1)ROS Navigation Stack

The sensor source used for the generation of maps is the RP LiDAR A2M8. Once the global

map is generated, it is stored in the map server. The local and the global map are then used by

the path planning algorithms named global_planner and local_planner. These algorithms take

the inputs of the odometry sources such as the encoders and sensor transformation packages.

The output of the path planners are used to control the motor speed and thus the movements

of the robot.

This methodology was proposed to be implemented on a test robot first for evaluating the

responses of ROS after which the same was to be implemented on the final carrier robot which

can carry heavy objects and perform navigation and mapping at the same time.

2)Hardware Architecture

The Raspberry Pi (Rpi) 4b is the main controller used in the system. It is used along with a 64

GB SD card so that it can support Ubuntu 20.04 along with ROS Noetic. The main sensor used

is the RPLiDAR A2M8 which is a 360 degree 2D laser scanner.

It is used for the creation of maps which can be later used for autonomous navigation. The Rpi

communicates with the Arduino uno using rosserial protocol. The Arduino, which is the lower

level microcontroller, controls the Quad Encoder Geared DC Motor via motor drivers. An SMPS

is used as the supply for the motors and the LiDAR and Rpi are powered by a two output MI

power bank. The Rpi can be controlled remotely using a laptop with the help of Secure Shell

(SSH) and Virtual Network Computing (VNC).

 Fig 2: Hardware Architecture

Results and Conclusion:

Small Test Robot

The ability to control a robot's velocity from a distance is important for a variety of tasks,

including mapping, exploring unknown terrain, and accessing hard-to-reach locations.

Encoders are used to obtain the odometry of the robot. When the motors of the test robot

rotate the built-in encoders generate pulses which are measured in the form of ticks. These

ticks can be used to measure the distance traveled by the robot and thus locate it. The ticks

are published using the topics /left_ticks and /right_ticks for the left and right wheel

respectively. The number of ticks calculated per revolution was 272.

The motors were then controlled with rqt_robot_steering interface and teleop_twist_keyboard

A room was mapped and a global cost map was created using lidar while moving the bot

remotely using a teleop twist keyboard. The map generated was stored in the map server as

a PGM andYAML file.

Fig. 3 Map generated. Fig. 4 Small Test Robot

To achieve autonomous navigation using ROS a launch file was written to start multiple nodes

required for the movement of the robot. roslaunch is a tool for easily launching multiple ROS

nodes locally and remotely via Secure Shell (SSH), as well as setting parameters on the

Parameter Server. It includes options to automatically respawn processes that have already

died. roslaunch takes in one or more extensible markup language (XML) configuration files

(with the .launch extension) that specify the parameters to set and nodes to launch, as well

as the machines that they should be run on

The map from the map server is loaded and a 2D pose estimate is given to help AMCL localize

the robot’s initial position on the map. The 2D nav goal tool of RVIZ is used to send the

destination. rqt_graph provides a GUI plugin for visualizing the ROS computation graph.Its

components are made generic so that other packages where graph representation has to be

achieved can depend upon this package

Fig. 5 Initial and final pose on the map Fig. 6 Robot Trajectory

The following rqt_graph was generated on executing the autonomous navigation launch file.

Fig. 7 Rqt graph

1) Autonomous Carrier Robot

The code developed in the test robot was used in a bigger structure. This structure was able to

withstand a weight of more than 50 kgs. It had two wheels powered by two MY1016ZL 24V

250W DC Motor, two free wheels. The battery used was 24V, 12Ah. The Lidar and Arduino

mega were connected to the Raspberry pi which computed all the inputs and sent the required

pwm values to the motors. Mapping and Navigation were performed on this robot.

Fig. 8 Back and Front view of the autonomous carrier robot

Scope for future work:

The future scope of this project involves the integration of Collision Prediction based Social

Force Model (CP-SFM). This model enables the robot to be socially aware, that is, the robot

will respect the personal space of the human beings in its environment and navigate through a

human friendly path. This will allow the smooth deployment of the autonomous carrier robot in

public places which have less density of population. In case of people rich environments, deep

inforcement learning can be incorporated with ROS as it makes use of Markov Decision

Process. Instead of using RaspberryPi, Jetson Nano can be used as it has more processing

speed and AI/ML capabilities.ROS 2 has can be brought into the design instead of ROS. ROS

2 provides more real time results as ros core is eliminated in its architecture . Further a GUI

can be developed and designed to make the entire system user friendly.

