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Introduction:  

Fly robots are attracting many researchers recently, because of their superior 

maneuverability and aerodynamic performance, especially in the low Reynolds number flight 

regime. Also, due to light weight, such small robots are extensively used for surveillance in 

unknown terrains and environments. Because of these reasons, we attempt to develop a 

flapping wing fly robot that is capable of vertical take-off, hovering and landing using 

minimum power supply. And form a pattern or configuration using these fly robots. 

Fly robots adopt flapping mechanism for generating thrust and lift during flight. These 

flapping vehicles have been forgotten due to the success of fixed wing aircrafts. But recently 

the rebirth of flapping vehicles is occurring in the form of Unmanned Air Vehicles (UAV). 

This rebirth is occurring mainly due to the requirement of high altitude surveillance. Due to 

their shape fly robots look like a natural bird and it doesn’t attract enemy’s attention. 

Coordinated behaviour of multiple fly robots leads to a formation configuration. The 

configuration includes open and closed contours. Closed contour refers to ring formation in 

the form of a polygon. Open contour refers to chain formation in the form of a tree. These 

patterns are maintained by proper coordination, control and communication. The formation 

in any geometric shape is stabilized using control techniques. Following is a summary of few 

recent works that highlights the limitations in the analysis of formation in multi robot systems:  

1. The centralized control strategy [1] is developed to obtain a polygon (a closed 

contour). Only a fixed, rigid formation can be obtained. 

2. The decentralized control strategy [2] is developed to move agents collectively in the 

desired pattern. The rectangular lattice pattern is formed after achieving consensus 

by assigning identity or unique number to each agent. The agent collision is not 

addressed during the agent movement from one line to another. 

3. The synchronous control strategy [3] is developed using transition and rotation 

dynamic model for agents to follow in real-time. The switching of formation from 

ellipse to rectangle is not well-defined. The transition of formation is not addressed 

while satisfying the formation constraints. 
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4. The neural network control [4] strategy is developed for leader-follower configuration 

for formation. The desired geometric pattern is not achieved while maintaining the 

flocking behavior. 

5. The adaptive control strategy is developed for formation control of autonomous 

vehicles [5]. The formation transition is not addressed with the changes in the terrain 

geometry. 

6. The adaptive control strategy is combined with the neural network for formation 

switching while flocking and avoiding the collision [6]. The desired pattern with 

avoiding collision is not obtained. 

7. The predictive model is used in the pattern formation [7,8]. The predictive model in 

the model-based Reinforcement Learning (RL) is viewed as the constrained control 

strategy. Any missing information in the predictive model affects the stability of the 

pattern formation. The issues of model-based control strategy for pattern formation 

have not been addressed. 

The formation error depends on the system model and changes in parameter of the 

system affects the performance and stability. There is a need to develop a decentralized 

adaptive control strategy to overcome the disadvantages of centralized control strategy and 

requirement of the system model. In this project a decentralized model-free based RL is 

developed for triangular formation. 

Objectives:  

The objectives of the project are intended to perform the following tasks: 

a) To perform literature review on fly robots, formation control and aerodynamics of fly 

robots. 

b) To develop an algorithm for fly robot in triangular formation. 

c) To develop CAD model of fly robot with its system and subsystem. 

d) To develop a fly robot model.  

e) To test the fly robot for surveillance. 

Methodology: 

The proposed work is motivated from the deterministic cleaning-robot MDP. This 

deterministic problem in Figure 1 shows that a cleaning-robot must collect can and charge 

the battery. 

 

Figure 1. Deterministic Cleaning Robot [9] 

In the above problem, the states-space is discrete and contains 6 states, where the 

robot moves to left or right depending on the optimal action chosen. In the proposed work, 

the same idea is projected for 3 robots and the robot transit in the states space to find its 

position. The proposed model is described in Fig. 2. In real – time, the geo-tag position 
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sensor will be attached and considered as states- space. The robots are awarded or 

penalized based on their positions in the states – space.  

 

Figure 2. Proposed Model for Pattern Formation 

Proposed structure for learning: 

Initially first agent starts to explore the States-Space from States−Space ID: 1 till it computes 

its position and gets locked. Here lock indicates whether the agent should continue with the 

learning process or not. 

 

Decentralized learning for multi-agents: 

In this work, the decentralized control topology utilizes Q learning for making agents 

to learn parallel in both 𝑥 and 𝑦 coordinates.  Q learning is used to find an optimal action-

selection policy for given action-state pair. Optimal action is chosen based on deterministic 

Markov decision process (MDP). MDP model contains a set of states; ‘𝑠’, a set of possible 

actions; ‘𝑎’, reward function 𝑅(𝑠, 𝑎), a description or task ‘𝑇’. The deterministic actions are 

represented using  𝑇: 𝑆 × 𝐴 → 𝑆 . For each action-state pair, new state is computed based 

on the Q-learning epsilon-greedy exploitation method. This exploitation method is the policy 

adopted for computing the next action of an agent and is computed using Eq.1. The action 

space is defined as  𝐴 = {−1,1} , where an agent can move either to the left (𝑎 = −1) or to 

the right (𝑎 = 1) 

 𝐴𝑐𝑡𝑖𝑜𝑛 =   𝑄(𝑠𝑡𝑎𝑡𝑒𝑎∈𝐴
𝑎𝑟𝑔𝑚𝑎𝑥

_𝑖𝑑, 𝑎) (1) 

The 𝑄  function is computed using Eq.2. 

 𝑄(𝑠𝑡𝑎𝑡𝑒_𝑖𝑑, 𝑎𝑐𝑡𝑖𝑜𝑛_𝑖𝑑)  

=  𝑄(𝑠𝑡𝑎𝑡𝑒_𝑖𝑑, 𝑎𝑐𝑡𝑖𝑜𝑛_𝑖𝑑)  +  𝑎𝑙𝑝ℎ𝑎  (𝑛𝑒𝑥𝑡_𝑟𝑒𝑤𝑎𝑟𝑑 

+  𝑔𝑎𝑚𝑚𝑎 ∗  𝑚𝑎𝑥(𝑄(𝑛𝑒𝑥𝑡_𝑠𝑡𝑎𝑡𝑒_𝑖𝑑, : ))  

−  𝑄(𝑠𝑡𝑎𝑡𝑒_𝑖𝑑, 𝑎𝑐𝑡𝑖𝑜𝑛_𝑖𝑑)) 

(2) 

The goal of the approach is to find an optimal policy that makes the return or desired 

target from any initial state. Here 𝑔𝑎𝑚𝑚𝑎 is the learning rate schedule, 𝑎𝑙𝑝ℎ𝑎 is the 

exploitation rate schedule and 𝑟𝑒𝑤𝑎𝑟𝑑 is given to the agent for action taken based on the 

policy. The Q function is executed till the agent finds its position and locks itself without 

moving further. For the next agent, the initial state is considered as the previous agents’ final 

position and performs Q learning till the agent reaches its position.  
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Reward computation: 

The agent space contains six agents, denoted by integers 1 to 6:  𝑁 =  {1,2,3,4,5,6}. 
The next state of each agent is computed and updated based on the action taken from the 

optimum Q value. Each agent is defined in the discrete states-space and contains 6 distinct 

states, denoted by real numbers -2 to 3: 𝑋 =  {−2, −1,0,1,2,3}. The agent can move to the 

left (𝑎 =  −1) or to the right(𝑎 =  1). The next state of each agent is updated till it finds its 

position in 𝑋 and lies within the states space of 𝑋. The agent gets positive reward when the 

agent performs certain action, is penalized if the agent performs action even after finding its 

position and in neither case, the agent is given as lesser negative reward. The 

corresponding transition function for the above problem is given in Eq. 3. 

 𝑓(𝑥, 𝑢) = {
𝑥 + 𝑢  𝑖𝑓 − 2 ≤ 𝑥 ≤ 3

𝑥  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
} (3) 

The corresponding reward function is defined for each agent is defined independently 

for 𝑥 and 𝑦 coordinates.  

1) Reward computation for x-coordinate of each agent: 

The reward function for each agent is given in Eq. 4 to Eq. 6. 

 

𝑅1(𝑥, 𝑢) = {

10             𝑖𝑓 𝑥 =  −2 𝑎𝑛𝑑 𝑢 = 1
10              𝑖𝑓 𝑥 = 0 𝑎𝑛𝑑 𝑢 =  −1

−10  𝑖𝑓 𝑥 =  −1 𝑎𝑛𝑑 𝑢 = 1 𝑜𝑟 − 1
−1                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}   

   

(4) 

 

𝑅2(𝑥, 𝑢) = {

10             𝑖𝑓 𝑥 =  −1 𝑎𝑛𝑑 𝑢 = 1
10              𝑖𝑓 𝑥 = 1 𝑎𝑛𝑑 𝑢 =  −1
−10  𝑖𝑓 𝑥 =  0 𝑎𝑛𝑑 𝑢 = 1 𝑜𝑟 − 1
−1                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}   

   

(5) 

 

𝑅3(𝑥, 𝑢) = {

10             𝑖𝑓 𝑥 =  0 𝑎𝑛𝑑 𝑢 = 1
10              𝑖𝑓 𝑥 = 2 𝑎𝑛𝑑 𝑢 =  −1
−10  𝑖𝑓 𝑥 =  1 𝑎𝑛𝑑 𝑢 = 1 𝑜𝑟 − 1
−1                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}   

(6) 

2) Reward computation for y-coordinate of each agent: 

The reward function for each agent is given in Eq. 7 to Eq. 9. 
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𝑅1(𝑥, 𝑢) = {

10             𝑖𝑓 𝑥 =  −1 𝑎𝑛𝑑 𝑢 = 1
10              𝑖𝑓 𝑥 = 1 𝑎𝑛𝑑 𝑢 =  −1
−10  𝑖𝑓 𝑥 =  0 𝑎𝑛𝑑 𝑢 = 1 𝑜𝑟 − 1
−1                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}   

   

(7) 

 

𝑅2(𝑥, 𝑢) = {

10             𝑖𝑓 𝑥 =  0 𝑎𝑛𝑑 𝑢 = 1
10              𝑖𝑓 𝑥 = 2 𝑎𝑛𝑑 𝑢 =  −1
−10  𝑖𝑓 𝑥 =  1 𝑎𝑛𝑑 𝑢 = 1 𝑜𝑟 − 1
−1                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}   

   

(8) 

 

 
 
 
  
 
 

𝑅3(𝑥, 𝑢) = {

10             𝑖𝑓 𝑥 =  0 𝑎𝑛𝑑 𝑢 = 1
10              𝑖𝑓 𝑥 = 2 𝑎𝑛𝑑 𝑢 =  −1
−10  𝑖𝑓 𝑥 =  1 𝑎𝑛𝑑 𝑢 = 1 𝑜𝑟 − 1
−1                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}   

   

(9) 

Design and development of fly robots: 

The modelling of flapping wing UAV “fly robots” which is capable of performing vertical take-

off, landing, hovering and horizontal flight was done using CATIA V5. The vehicle consists 

of a fuselage, wing, transverse gear system and tail. The fuselage is 27 cm long and it 

provides support to the transverse gears, electronics, servo motors, battery and camera. It 

has been made sure that the fuselage weighs light by proper weight reduction (see Figure 

3). The wing has a total span of 60 cm and chord length of 20 cm (see Figure 4). A triangular 

tail of 10 cm base and 10 cm height is used to increase the stability and control (see Figure 

5). The tail also includes two servos for pitch and roll control. A flat wing configuration with 

no camber has been chosen. The wing will be assembled as a single sheet flat wing with 

carbon fibres as the skeleton material, in order to achieve the desired flexibility and minimum 

weight. Carbon fibres are also used in the construction of the wings to provide a lightweight 

and stiff structure of spars (Figure 4). The material used for the wing cover is nylon sheet. 

 

Figure 3. CAD model of the fuselage of the fly robot. 
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Figure 4. CAD model of the transverse gear system. 

 

Figure 5. CAD model of the wing of the fly robot 

 

Figure 6. CAD model of the tail of the fly robot. 

 

Results and Conclusions 

The agents’ transit from one state position to the other based on the optimal deterministic 

action till the agent finds its position and locks in that position. During transition, several 

episodes the agent has undergone to find its position and by using next state transition 

history of the agent in x and y coordinate, the pattern is obtained. The traversal episodes 

are listed in Table 1. The triangular formation is shown in Figure 7. After travelling through 

the states-space, the triangular formation is achieved.  

Final CATIA model of the fly robot is shown in Figure 8. The specifications of the model were 

arrived at based on literature survey and preliminary analysis. Before the fabrication of the 

fly robot, we will conduct further structural and aerodynamic analysis to confirm the 

performance of the fly robot.      
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Table 1 Travel History of Agents 

Traversal History x Traversal History y 

States – 
Space  
ID 

Next 
State in 
x 

Agent ID Episode
s 

States – 
Space  
ID 

Next 
State in 
y 

Agent ID Episode
s 

1 -2 1 1 2 -1 1 1 

2 -1 1 2 1 -2 1 2 

1 -2 2 1 2 -1 1 3 

2 -1 2 2 3 0 1 4 

1 -2 2 3 2 -1 2 1 

1 -2 2 4 1 -2 2 2 

2 -1 2 5 2 -1 2 3 

3 0 2 6 2 -1 3 1 

2 -1 2 7 1 -2 3 2 

3 0 2 8 2 -1 3 3 

4 1 2 9     

1 -2 3 1     

2 -1 3 2     

1 -2 3 3     

1 -2 3 4     

2 -1 3 5     

3 0 3 6     

 

 

 

Figure 7. Triangular formation by multi robots. 
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Figure 8. Final CATIA model of the fly robot. 

Scope for future work: 

In the next phase of the project, we will complete the fabrication of the fly robots and test 

the robots for surveillance.     
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